منابع مشابه
On the extender algebra being complete
We show that a Woodin cardinal is necessary for the Extender Algebra to be complete. Our proof is relatively simple and does not use fine structure.
متن کاملsurvey on the rule of the due & hindering relying on the sheikh ansaris ideas
قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...
15 صفحه اولThe long extender algebra
Generalizing Woodin’s extender algebra, cf. e.g. [8], we isolate the long extender algebra as a general version of Bukowský’s forcing, cf. [1], in the presence of a supercompact cardinal.
متن کاملThe Java Syntactic Extender (JSE)
The ability to extend a language with new syntactic forms is a powerful tool. A sufficiently flexible macro system allows programmers to build from a common base towards a language designed specifically for their problem domain. However, macro facilities that are integrated, capable, and at the same time simple enough to be widely used have been limited to the Lisp family of languages to date. ...
متن کاملon the effects of pictorial clues on the efl learners listening comprehension development
the following null hypothesis was proposed: there is no significant difference between the efl students listening comprehension development receiving pictorial cues and those receiving no cuse. to test the null hypothesis, 52 male and femal freshmen students of medicine studing at iran university of medical scinces were randomly selected from a total population of 72 students. to ensure that th...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Lancet
سال: 1872
ISSN: 0140-6736
DOI: 10.1016/s0140-6736(02)62081-1